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A B S T R A C T

In this paper, a sensor fault detection and isolation technique is proposed using statistical methods. An enhanced
reconstruction method is proposed using Singular Value Decomposition (SVD). In the traditional SVD re-
construction method, the faulty data may affect other fault free data. The enhanced SVD (ESVD) reconstruction
method is a robust method to map as a normal data. The statistical hypothesis test, namely Generalized
Likelihood Ratio Test (GLRT) is applied to detect the fault in the residual space. The proposed method perfor-
mance is verified by the real data of Fast Breeder Test Reactor (FBTR).

1. Introduction

Continuous sensor health condition monitoring provides a variety of
benefits such as improved reliability, improved safety, reduced un-
necessary periodical sensor calibration testing. For monitoring and
controlling application of a complex production system, a large number
of distributed sensors are used to provide chronological and spatial
information. However, along with the benefit of using distributed
sensors, there are some risks because of the severe consequences may
arise, if the signals provided by sensors are out of calibration. A faulty
sensor can provide an inappropriate information that can affect the
system supervision and decisions making. Therefore, continuous mon-
itoring of the performance of the sensor, i.e., sensor fault detection and
localization are important issues in current research work.

In the literature, sensor fault detection and isolation are broadly
classified into two categories: model-based method and data-driven
method. In the model-based method, a mathematical model is designed
based on the physical representation of the process variables. They
include Kalman filter (Hajiyev and Caliskan, 2000; Salahshoor et al.,
2008; Saravanakumar et al., 2014), parity equation (Gertler, 1997;
Odendaal and Jones, 2014), Luenberger observer-based (Tarantino
et al., 2000; Alkaya and Eker, 2014) and state observer-based approach
(Zarei and Poshtan, 2011). The application of model-based depends
upon the availability of the model because, in a complex system, it is
very difficult to get an exact mathematical model. Another approach for
fault detection is the data-driven method. This is based on historical
data, not necessarily the good knowledge about the physical re-
presentation of the process parameters. In general, data-driven methods

are identified the faulty sensor using classification and data redundancy
techniques. In classification technique, the faulty data are segregated
from the normal data. Several classification methods are applied in
fault detection; these include Support Vector Machine (SVM) (Banerjee
and Das, 2012; Yin et al., 2014; Namdari and Jazayeri-Rad, 2014),
Neural Network (Fast and Palme, 2010; Palmé et al., 2011) and Deep
Learning (Tamilselvan and Wang, 2013; Shang et al., 2014). The clas-
sification methods are detected faulty data, not the faulty sensor and
the classification accuracy depends on the complexity of the data, i.e.,
heterogeneity, non-linearity and dimensionality of the data. Therefore,
data reconstruction methods are practical for fault detection in in-
dustrial application. Data redundancy may produce two ways, one is
data approximation and another is data reconstruction. The data are
approximated by different types of artificial neural network (ANN)
learning techniques, like Back-propagation Neural Network (BPN) (Wu
and Saif, 2005), Auto-Associative Neural Network (AANN) (Huang,
2004), Cascade Neural Network (CNN) (Hussain et al., 2015), and Re-
current Neural Network (RNN) (Talebi et al., 2009). These methods are
computationally complex and have some parameters. This is difficult to
update the model, because, in many industrial applications of condition
monitoring such as Nuclear Power Plants, it is common to update the
model periodically in order to follow gradual medication of signal
characteristic. On the other hand, data reconstruction models are less
computation complexity. For data reconstruction, several statistical
techniques are employed, they are Principal Component Analysis (PCA)
(Harkat et al., 2006; Tharrault et al., 2008; Harrou et al., 2013), Auto-
Associative Kernel Regression (AAKR) (Garvey et al., 2007; Maio et al.,
2013), and Partial Least Square (PLS) (Muradore and Fiorini, 2012).
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Among them, AAKR based reconstruction is efficient to map as a normal
data. Baraldi et al. (2015) noticed that the reconstructed signal by
AAKR is affected by drift trend, they assume the values in the middle of
drifted and expected values. In PCA reconstruction, the reconstructed
data are not mapped to normal data, because selected principal com-
ponents are unable to capture the important features of the data. Re-
cently, Harrou et al. (2013) noticed that the PCA reconstruction model
with the Generalized Likelihood Ratio Test (GLRT) fault detection
performance is desirable. The reconstruction error is adjusted by the
GLRT. The PCA-GLRT is superior to PCA-T2-statistic and PCA-Q-statistic
(Harrou et al., 2013). But, the accuracy depends on the choice of
principal components, and heterogeneity, non-linearity, and di-
mensionality of the data. To overcome these difficulties, an alternative
data reconstruction method, namely singular value decomposition
(SVD) was proposed (Mandal et al., 2017b). Jha and Yadav (2011) were
noticed that SVD based reconstruction is an effective tool for denoising
the signal. But in faulty data reconstruction, the few faulty points of a
sensor may affect the whole data points of that signal, which may
produce false alarms. In this paper, an enhanced SVD (ESVD) based
reconstruction method is proposed for thermocouple sensor fault de-
tection in Fast Breeder Test Reactor (FBTR). The major contributions of
this paper are as follows:

• An enhanced reconstruction method ESVD is proposed for data re-
construction.

• The effective statistical hypothesis test, generalized likelihood ratio
test (GLRT) is applied as a fault detection metric.

• The proposed method ESVD-GLRT is superior to PCA-GLRT and
SVD-GLRT for fault detection.

This paper is organized into five sections including the present one.
The next section presents the brief description about the FBTR. Section
3 represents the proposed method using ESVD based reconstruction and
GLRT. The result and discussion of the proposed method with com-
parison the existing method is given in section 4. The final conclusion of
this paper and recommendations for future research work is given in
section 5.

2. Brief description of FBTR

The FBTR uses plutonium-uranium mixed carbide as fuel and liquid
sodium as a coolant. The entire system is broadly divided into three
systems: primary sodium system, secondary sodium system, and steam
and water circuit. The important components of the primary sodium
system are the reactor assembly, two intermediate heat exchangers
(IHX), two sodium pumps and interconnecting piping. The secondary
system includes sodium pumps, re-heaters, surge tanks, steam generator
and connecting piping. The heat generated in the fuel sub-assemblies
are removed by circulating liquid sodium through the reactor core. Two
centrifugal pumps are used to pump sodium through the fuel sub-as-
semblies in the reactor core. Three thermocouples are used to measure
the sodium temperature at the inlet of the reactor core. The central fuel
sub-assembly contains four thermocouples (Tna000X, Tna000Y,
Tna000Z, and Tna000W) at the outlet and the rest of each 84 fuel sub-
assemblies contain two thermocouples (Tna0nX, Tna0nY, for n = 01 to
84) at the outlet. Chromel-Alumel type thermocouples are used to
measure the temperature of sodium at the inlet of the reactor core and
at the outlet of the fuel sub-assemblies. The schematic diagram of the
FBTR is depicted in Fig. 1.

In this work, thermocouple sensor fault detection is proposed using
statistical methods. The proposed method is based on data re-
construction. The next section explains the data reconstruction tech-
nique using principal component analysis and singular value decom-
position.

3. Proposed method

The SVD is an effective tool for denoising in image processing,
signal processing, and statistical analysis. It is used to map the data into
the normal data by removing noise and outlier by reconstruction
technique (Mandal et al., 2017b). The proposed fault detection tech-
nique is based on a data reconstruction technique. The ESVD based data
reconstruction method is applied. The fault detection process consists of
two steps: (i) residual generation, and (ii) residual evaluation. Residual
is generated by reconstructing the data using the ESVD method. The
deviation of reconstructed data from the original is called residual. The
residual space is tested by the GLRT to detect the faulty sensor. The
block diagram of the proposed method is given in Fig. 2. The re-
construction of the proposed method is compared with PCA and SVD.
The idea of the ESVD reconstruction method is same as the PCA re-
construction method. The next subsection explains the data re-
construction by the PCA, SDV, ESVD, and the statistical hypothesis test
GLRT for fault detection.

3.1. Data reconstruction using PCA

The PCA is a widely used statistical tool for dimension reduction
and data reconstruction. PCA is used to project the data into a lower
dimensional linear space such that the variance of the projected data is
maximized. Equivalently, it is the linear projection that minimizes the
average projected cost, i.e. mean squared distance between the data
points and their projections. Let X be a data matrix with dimension

×M N , where M is the number of observations and N is the number of
variables. The data samples are considered as → ……→x x, M1 in a N-dimen-
sional space, where the mean is computed as → = ∑ →

=μ xM i
M

i
1

1 along with

their covariance = ∑ →−→ →−→
=C x μ x μ( )( )M i

M
i i

T1
1 . The eigenvalues and ei-

genvectors are computed from the covariance matrix C by eigenvalue
decomposition or SVD. The SVD is computed the eigenvalues and ei-
genvectors as:

=C U VΣ T (1)

where U and V are the ortho-normal and Σ is the diagonal matrix of
eigenvalues in descending order i.e. > > … >λ λ λNN11 22 . The matrix C
is a symmetric matrix, so the eigenvalues are real and the eigenvectors
are orthogonal. Also, by construction, the matrix C is positive semi-
definite so, λNN ≥ 0, i.e. eigenvalues are nonnegative.

Thus, for the problem at hand to use a PCA approach is to represent
the data X in a different space (p dimensional, p < N) using a set of
principal orthogonal vectors →vi of V corresponding to largest eigenva-
lues. PCA reduces the dimension by projecting the data onto a space
spanned by the eigenvectors →vi with >λ Tii , where T is a threshold. In
other words, the dimension reduction is achieved by ordering the ei-
genvalues from highest to lowest, to get the components in order of
significance. Thus, projecting p eigenvectors that corresponding to
highest p eigenvalues, the reduced matrix is defined as:

̂=S XV (2)

where = … ∈ ×S s s s[ , , ., ]p
M p

1 2 R is called the score vector or principal
component vector and ̂ = … ∈ ×V v v v[ , , , ]p

N p
1 2 R is called the loading

vector, are the eigenvectors corresponding to p largest eigenvalues.
Thus, one needs to obtain the eigenvalues > > … >λ λ λNN11 22 and

plot = ∑ ∑= =f p λ λ( ) /i
p

i i
N

i1 1 , to see how f p( ) increases with p and takes
the maximum value of i at =p N . PCA is good if f(p) asymptotes rapidly
to 1. This happens, if the first eigenvalue is big and the remainder are
small. PCA is bad if all the eigenvalues are roughly equal.

The data reconstruction can be done by:

̂ ̂=X XVV T (3)

Therefore, the data matrix X can be written as:

̂ ̂ ̂ ̂= + = + −X X E XVV X VVI( )T T (4)
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where X is the approximation of X and E is the error.
An important task in PCA method is to select p largest eigenvalues

where the respective eigenvectors or loading vectors finds the sig-
nificant direction of the variation of the variables. The largest eigen-
vectors are selected by scree-plot, sequential analysis, parallel analysis,
cumulative percent variance.

3.2. Traditional singular value decomposition for data reconstruction

The SVD method factorizes the given matrix into singular value and
singular vector matrices. The details of the SVD method are provided in
Mandal et al. (2017b). Any matrix, ∈ ×X Rm n, where >m n, can be
decomposed as:

=X U VΣ T (5)

where U is an ×m m left singular vector, V is an ×n n right singular
vector and Σ is an ×m n diagonal matrix with singular values in des-
cending order i.e. > > … >λ λ λnn11 22 . The left and right singular vec-
tors are the eigenvectors of XX T and X XT respectively, and the singular
values are the eigenvalues of XX T or X XT . The singular vectors are
ortho-normal, i.e. =UU IT

m and =VV IT
n, where I is the identity

matrix. If the Σ is written as:
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(6)

then the Eq. (5) can be re-written as,

∑=
=

X u λ v
i

n

i ii ni
T

1
m

(7)

By Eq. (6), the data can be reconstructed by selecting the important

singular values. The SVD approach operates by projecting the original
data onto a new basis, which captured the principal features of the data.
If the number of principal singular value k is determined, the dimension
of the singular vectors and singular value matrices are truncated into k
dimension as, ∈ ∈× ×U VR R,k

m k
k

m k and ∈ ×RΣk
k k.

The data can be reconstructed by the multiplication of the truncated
matrices:

= × ×X U VΣk k k
T (8)

Residual is generated by the difference between the original data X and
reconstructed data X .

= −E X X| (9)

The goodness of the SVD reconstruction depends on an accurate
selection of principal singular values. Over and underestimation of the
number of singular values can initiate noise that disguises the important
features in the data and omit important variations in the data which is
degraded the reconstruction by SVD. So, it is important to choose the
appropriate principal singular values. Like PCA, important singular
values can be selected by the Cumulative Percent Variance (Diana and
Tommasi, 2002), parallel analysis, sequential tests (Jolliffe, 2002), etc.
In this paper, principal singular values are selected by the cumulative
percent variance that captured over 90% of the cumulative sum of the
eigenvalues. In general, the first singular value is always captured
above 90% variance of the data. Therefore, unlike PCA, the principal
component selection in SVD is the easiest problem.

3.3. Enhanced SVD method for data reconstruction

In the traditional SVD method, the training data are taken at normal
condition of the plant with all sensors are in healthy condition. The

Fig. 1. Schematic flow diagram of the main heat transport system in FBTR.

Fig. 2. Block diagram of proposed method.
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training data matrix decomposes into three matrices as in Eq. (1). The
principal component is selected based on the dominated singular va-
lues. In sensor data, the first singular value is always larger, i.e., cap-
tured above 90% variation of the data. The dimension of the left sin-
gular vector, right singular value and singular value matrices are
truncated based on the number of principal singular values. The
training data matrix is reconstructed by multiplying these truncated
matrices in a given order. For test data reconstruction, similarly, the
data matrix decomposes into three matrices and their dimensions
truncated into lower dimension based on the number of principal sin-
gular values as chosen in the training phase. For fault free test data, the
reconstruction is mapped to normal data as training reconstruction.
But, if the test data have any faulty sensor, the few faulty data points
will affect all the data points of that sensor in reconstruction. The af-
fectation may increase or decrease the value. It has created a problem to
find out the exact location of the faulty region of the sensor data. As a
result, it may produce false alarms. To come out from this problem, this
paper proposed an enhanced technique for test data reconstruction. The
principle of enhanced SVD (ESVD) reconstruction is based on PCA data
reconstruction technique. Since the right singular vector matrix is
ortho-normal, i.e. =V IV T

n. Therefore, the test data can be re-
constructed as follows:

= × ×Y Y V Vk k
T (10)

where Y is the test data matrix of dimension l× n, Y is the re-
constructed test data matrix of dimension l × n and Vk is the principal
right singular vector matrix of the training data of dimension n × k.
The ESVD data reconstruction is robust because it is using the principal
singular vectors of the normal data (training data), the reconstruction
matrix is not affected by the faulty data points.

3.4. Generalized likelihood ratio test

Binary hypothesis tests are applied for fault detection. The idea
behind the binary hypothesis test is to make a yes or no decision about
the existence of a fault. The details of this subsection are provided in
(Harrou et al., 2013; Mandal et al., 2017a). Let X be the observation
vector with distribution function P x( )θ , θ is the parameter belongs to
parameter space Θ. Two types of hypothesis are used in fault detection,
the null hypothesis =H θ θ:0 0, that represents no fault and the alter-
native hypothesis =H θ θ:1 1, that represents the existence of a fault.
Therefore, in fault detection, the parameter space is assumed as:

= ⋃θΘ { }θ
0 1 , where ⋂ = ∅θ θ

0 1 . The composite hypothesis is also applied
to classify the different types of fault with different magnitude

=θ i n, 1,2,.. .i For composite hypothesis, the parameter space is defined
as: = ⋃ … ⋃θΘ { . }θ

n
θ

0 1 . The test is used to mapping the observation space
onto a set of hypothesis as: � →δ H H: { , }n

0 1 . The efficiency of the test
can be measured by two functions, the probability of false alarm and
the power function. The false alarm defines false rejection of the null

hypothesis H0, and power function defines the probability of deciding
H1 when H1 is true. For an effective test probability of false alarm will
be less and power function will be high.

Among the different binary hypothesis tests for fault detection, the
efficient statistic is uniformly most powerful (UMP) test. The UMP test
defined the test with the greatest power among all possible tests for a
given probability of false alarm (Borovkov, 1998). However, the UMP
does not exist in all cases, because, the distribution function should be a
monotone likelihood ratio and the test should be one sided.

The GLRT is an alternative to UMP test, which can solve a composite
statistical hypothesis problem by maximizing the likelihood ratio
function. Let �∈x n, be an observation vector, for fault free case which
can be generated as a Gaussian distribution σ I(0, )n

2N and for faulty
case generated by Gaussian distributions ≠θ σ I( 0, )n

2N , where θ is the
mean vector defines the value of fault and σ2 is variance (known). The
fault is detected by deciding between:

= ∼H X σ I{ (0, )}n0
2N

= ∼H X θ σ I{ ( , )}n1
2N

In the GLRT, the unknown parameter θ is estimated by maximizing
the likelihood function. The generalized likelihood ratio is defined as:

= = =

∈
λ L

L
sup f x
sup f x

( )
( )

θ θ θ

θ θ

0

1 Θ

0

(11)

where L0 is restricted maximum likelihood estimation of θ and L1 un-
restricted maximum likelihood estimation. Therefore, ⩽ ⩽λ0 1 be-
cause ⩽ ∈L L θ( Θ).0 1 0 The statistic λ is called the test statistic in GLRT
and reject the null hypothesis H0 for small values of λ.

Equivalently, using Wald’s theorem, the statistic can be written as:

= − = −x logλ l l( ) 2 2( )1 0L , where = ⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

− ∑ =l log e
πσ

n x
0

1

2
σ i

n
i

2

1
2 2 1

2
and

= ⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

− ∑ −=l elog
πσ

n x x
1

1

2

( )
σ i

n
i

2

1
2 2 1

2
where x is the statistical mean of the

variable x.
After simplification, the GLRT statistic can be computed as:

∑ ∑= ⎛

⎝
⎜ − − ⎞

⎠
⎟

= =

x
σ

x x x( ) 1
2

( )
i

n

i
i

n

i2
1

2

1

2L
(12)

In GLRT, the fault is detected by the decision between the hypoth-
esis H0 and H1 as:

= ⎧
⎨⎩

<
δ x

H ifL x h α
H else

( )
( ) ( )0

1 (13)

The threshold h(α) is selected as:

⩾ =P x h α α(Δ( ) ( ))0 (14)

Fig. 3. Eigenvalues of the case study data.

Fig. 4. Singular values of the case study data.
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where P B( )0 defines the probability of the event B when X is distributed
with the parameter of null hypothesis H0 and α is the probability of
false alarm.

4. Result and discussion

This paper focuses on the thermocouple sensor fault detection in
FBTR. The FBTR has 175 thermocouples to measure the sodium tem-
perature, the details are given in section 2. The performance of the

proposed method is validated by the real data of FBTR. A case study is
taken in the isothermal condition of the process. In isothermal condi-
tion, all control rods are put down. Therefore, no reactions are hap-
pening to generate the power. Some external heat is given to continue
the flow of the sodium. In isothermal condition, all thermocouples
reading temperatures are approximately homogeneous and tempera-
ture lies approximately in between 180 °C to 187 °C. In this case, the
training data contains 800 observations of 175 thermocouple sensors in
normal conditions of the plant when all sensors (Thermocouples) are in

Fig. 5. Data reconstruction by PCA, SVD and
SVD of a fault free data.

Fig. 6. Data reconstruction by PCA, SVD and
SVD of a faulty data.
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healthy condition. The test data contains 200 observations of the same
number of sensors. In test data, a gradual fault is simulated on the 7th
sensors (TNA002X).

In this work, the proposed ESVD-GLRT fault detection performance
is compared with PCA-GLRT and SVD-GLRT. Data reconstruction by the
PCA is depending upon the characteristics of the eigenvalues of the
covariance matrix. If the eigenvalues are roughly equal, the re-
construction is not good, i.e. data does not map to the normal data. If
the first eigenvalue is larger and remaining are very small, the re-
construction is good. In the case study data, the eigenvalues are roughly
equal, is presented in the Fig. 3. Whereas the singular values of the data
are shown in Fig. 4. The first singular value is larger and remaining are
very small, so in the figure only first singular is visible and others are
negligible.

The reconstruction generated by the PCA is not mapped to normal
because eigenvalues are roughly equal. But, Harrou et al. (2013) were
developed a method for fault detection using PCA and GLRT. The GLRT
has the ability to handle some reconstruction error. However, for a
large number of sensors, the PCA-GLRT may produce false alarms. The
data reconstruction of fault free data using PCA, SVD and ESVD is
shown Figs. 5–7. Similarly, for faulty data reconstruction using PCA,
SVD and ESVD is shown in Figs. 8–10, where SVD, ESVD reconstruction
clearly shown the deviation of reconstructed from the original data.

For a faulty test data reconstruction by traditional SVD method, the
faulty data points of a sensor may affect the other fault free data points
of that sensor. The proposed ESVD mitigate this limitation. In ESVD, the
test data are reconstructed by the singular vector of the training data by
the Eq. (6). The reconstructed by the PCA and the original data has a

Fig. 7. Top (left): A normal signal of the
thermocouple and its simulated gradual
fault; top (right) and bottom: residual ob-
tained by PCA, SVD and ESVD method and
the residual which would be obtained by a
model able to perfectly reconstruct the
signal behavior in normal conditions.

Fig. 8. The time evolution of the GLRT decision function on the residual generated by
PCA of a fault free data.

Fig. 9. The time evolution of the GLRT decision function on the residual generated by
SVD of a fault free data.

Fig. 10. The time evolution of the GLRT decision function on the residual generated by
ESVD of a fault free data.

Fig. 11. The time evolutions of the GLRT decision function on the residual generated by
PCA.
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huge gap. So, the residual generated by PCA and the residual which
would be obtained by a model able to perfectly reconstruct the signal
behavior in normal conditions is different, is shown in the top left po-
sition of the Fig. 7. In the same figure at the top right is presented the
normal signal and simulated gradual fault signal. Since the few faulty
data points of faulty sensors affected the whole data points of that
sensor in traditional SVD reconstruction, so there is a small deviation
between simulated error and SVD error, is shown in the bottom left of
Fig. 7. But, ESVD is a robust reconstruction method, so the simulated
error and ESVD reconstruction error has approximately coincided in the
Fig. 7 bottom right position.

The fault detection performance of PCA-GLRT, SVD-GLRT and
ESVD-GLRT are presented from Figs. 8–13. For a fault free data, the
GLRT decision function produces some false alarms for PCA

reconstruction, because there may be problematic in data reconstruc-
tion, is shown in Fig. 8. The SVD-GLRT and ESVD-GLRT are not pro-
ducing any false alarm for fault free test, are depicted in Figs. 9 and 10.
Consequently, for faulty test data, PCA-GLRT detected an actual fault
with some false alarms is shown in Fig. 11. Since, SVD data re-
construction has been affected by faulty data points, so they may pro-
duce false alarms only that sensor with actual fault, is shown in Fig. 12.
The robust reconstruction method ESVD with the help of GLRT, cor-
rectly find out the fault region of the data, is presented in Fig. 12.

Finally the analysis of detection using PCA-GLRT, SVD-GLRT, and
ESVD-GLRT is given in Fig. 14. It is analyzed that the PCA-GLRT based
method produces more false alarms than SVD-GLRT and ESVD-GLRT.
The ESVD-GLRT is an efficient method for sensor fault detection in
Nuclear Power Plants.

5. Conclusions

Online monitoring of the sensor physical condition can avoid many
problems associated with manual calibration of the sensors. The SVD
based model is developed for detection the sensor fault in Nuclear
Power Plants. This paper addresses an enhanced SVD (ESVD) re-
construction method, which is superior to SVD reconstruction. It is a
simple linear algebraic factorization method. The ESVD is used to
generate the residual matrix by selecting few singular vectors corre-
sponding to largest singular values. The reconstruction matrix is
mapped to the normal data. The GLRT is employed in residual space to
detect the faulty sensor. If the GLRT decision function crosses the
threshold value, then the fault is detected. The ESVD-GLRT based fault
detection method is better than PCA-GLRT and SVD-GLRT. For fault
free data, the PCA-GLRT also may produce false alarms due to data
reconstruction problem. The SVD-GLRT is better than PCA-GLRT, but
they didn’t find out the actual fault starting point due to the fault-free
data points of a signal are affected by the faulty data points. In a dy-
namic process, it is very flexible to update the model and satisfactorily
provide the result. The performance of the proposed method is vali-
dated by the real data of FBTR. Its time complexity is also very less
compared to other machine learning techniques. This paper addresses
only thermocouple sensor detection. In future work, we want to extend
to others sensor fault detection and analysis the fault in FBTR.
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